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ABSTRACT 

We prove that for cardinals 3 satisfying 3 "~ = 3 and for 3 ~ to,, there do not 
exist universal Eberlein Compacts of  weight 3, or universal WCG spaces of  
density character 3. If  3 is a strong limit cardinal of countable cofinality such 
universal spaces do exist. Thus under GCH universal spaces exist for 3 iff 
cof(O = to. 

1. Introduction 

A compact Hausdorff space is called an Eberlein Compact (EC) if it is 

homeomorphic to a weakly compact subset of some Banach space. A Banach 

space is called Weakly Compactly Generated (WCG) if it is spanned by some 

weakly compact subset. 
In [BRW] the authors ask whether, for a given cardinal 3, there exists an EC 

of topological weight T, universal for all EC's of weight T, and whether there 

exists a WCG space of density character T, universal for all WCG spaces of 
density character T. (Problems 1 and 2 in [BRW].) 

In this article we answer these questions for certain cardinals. Under GCH 

our results give a complete answer to these problems. The results are as 
follows: 

THEOREM A. I f  the cardinal r satisfies either r o' = r or T = to~, there is no 

universal EC of  weight r in the sense that there is no EC, K, of  weight r so that 

every EC of  weight T is a quotient of  a closed subset of  K. 
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THEOREM B. I f  the cardinal z satisfies either 3 °, = z or z = o91, there is no 

universal WCG space o f  density character r in the sense that there is no WCG 

space X o f  density character z, so that every WCG space o f  density character r is 

isomorphic to a subspace o f  a quotient o f  X. In fact such X cannot even be 

universal for all reflexive spaces o f  density character z. 

THEOREM C. l f  z is a strong limit cardinal o f  countable cofinality, there is 

an EC o//, of  weight z, universal in the sense that every EC of  weight z embeds as 

a retract of~l. 

THEOREM D. I f  z is a strong limit cardinal o f  countable cofinality , there is a 

WCG space B, o f  density character 3, universal in the sense that every WCG 

space of  density character z is isometric to a norm one complemented subspace 

o f  B. 

To prove Theorems A and B we develop in section 3 an ordinal index for 

EC's generalizing the Szlenk index introduced in [S]. The proofs then depend 

on the constructions, in sections 4 and 5, of  EC's of weight r whose indices are 

unbounded in z +. The proofs of  Theorems A and B (modulo the results of  

sections 3-5) are given in section 2. Theorems C and D will be proved in 

section 6. 
Under GCH every infinite cardinal satisfies either r °, = r (when cof(z) > o9), 

or cof(z) = 09 and then it is a strong limit. We thus obtain 

THEOREM E. Under GCH universal EC's or WCG spaces exist for r i f f  r has 

countable cofinality. 

We shall use standard notations and terminology concerning ordinals and 

cardinals, topology and Banach spaces. In particular we denote by o9(~ol) the 

first infinite (uncountable) ordinals, and we identify a cardinal with the first 

ordinal of  its cardinality. For a cardinal 3, we denote by T ÷ its successor. The 

cofinality of an ordinal a is denoted by cof(a), and it is the smallest cardinality 

of  a net of  ordinals increasing to a. The cardinality of  a set F is denoted by I F I. 

A cardinal r is a strong limit if 2 ~ < r for all cardinals a < 3. 

The weight w(K) of a topological space K is the minimal cardinality of a base 

for its topology. The density character of K is the minimal cardinality of  a 

dense subset of  K. For EC's the density character is equal to the weight. 

For a set F we denote by c0(F) the Banach space of  all f :  F ~ R so that 

{~': If(~)l >e} is finite for all e > 0 ,  with the sup norm. A fundamental 

theorem of Amir-Lindenstrauss ([AL], see also [G]) says that if X is a WCG 
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space, there is a one-one norm one operator T:X---, c0(F) where F is a set 

whose cardinality is the same as the density character of  X. In particular every 

EC, K, is homeomorphic to a weakly compact subset of  co(F) with IF[ -- w(g). 
If FI is a subset of  F and x E c0(F) we denote by x It, the element of  c0(F) 

given by x [r,(7) = x(7) for 7 EFI and x It,(7) = 0 for 7 ~F~. I f K i s  a subset of  

c0(F), we put K Ir, = {x [r, "xEK}.  
For a Banach space X we denote by B(X*) the unit ball of  X* with the w*- 

topology. If X is WCG, B(X*) is an EC [L]. 

An Eberlein compact was called strong in [BRW], if it could be embedded as 

a subset K of c0(F), consisting entirely of  characteristic functions of  (finite) 

subsets of  F. We shall also call such a subset of  c0(F) strong. For such sets we 

shall identify the characteristic function XA E K with the set A C F, and we shall 

consider K as a family of finite subsets of  F. A strong subset of  c0(F) is called 

adequate if A c B and B ~ K implies that A ~ K too. It is easy to see ([BS], 

Lemma 2) that an adequate strong subset of c0(F) is weakly compact iff it does 

not contain an infinite increasing chain. 

2. Proofs of Theorems A and B 

This proves 

(i) i (K)<z  +, 
contradiction. 

In section 3 we define an ordinal index i(K) for Eberlein Compacts 

satisfying: 

(i) The cardinality of  i(K) is at most w(K) m the weight of  K. 

(ii) If K c H then i(K) < i(H). 
(iii) If K is a quotient of  the EC H,  and if K is a strong weakly compact 

subset of c0(F), then i(K) < i(H). 
In section 4 we construct, for each cardinal z such that r '° = z, a family of 

strong weakly compact subsets {K~:~ < z +} of  weight z so that sup i(K¢) = 

r +. In section 5 a similar construction is made for r = coL. 

Theorem A. Indeed, i fKwere  universal with w(K) = r, then by 

yet by (ii) and (iii) we would get i(K)>supi(K~) = z ÷, a 

Theorem B follows from A. To see this assume X were universal. Given any 

WCG space Y of density character r, we could find a space Z containing Y and 

an onto linear operator T: X---- Z, [] T [] = I. But then B(Y*) is a quotient of  

B(Z*), and the latter is homeomorphic, via T*, to a subset B(X*). As the 

weight of  B(X*) is r, and as every EC, K, of  weight z is homeomorphic to a 

subset of  B(Y*) for some WCG space Y of density character z, it follows that 

B(X*) is a universal EC contradicting Theorem A. 
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In fact, by [DFJP] every EC of weight z embeds into B(Y*) for some 

reflexive Banach space Y of density character T. Thus X cannot even be 
universal for reflexive Banach spaces. 

3. The index 

The definition of  the index, i(K), of  an EC Kwill be done in two steps. In the 

first we generalize the definition of the Szlenk index [S] to weakly compact 

subsets of  a Banach space. This definition uses the particular embedding of the 

set in the Banach space, and is not a topological invariant. The second step is to 

define i(K) as the infimum of  the Szlenk indices over all possible embeddings 

of  K as a weakly compact subset of  some Banach space. This clearly makes i(K) 
a topological invariant - -  but is very difficult to estimate. The main part of  this 

section is the definition of another index, j(K), for weakly compact subsets of  

c0(F), which is easier to compute, and which gives a lower bound for i(K), i.e., 

j(K) <-_ i(K). In fact j(K) = i(K) for strong weakly compact sets. 

Let Kbe  a weakly compact subset o f a  Banach space, and let Xbe  the closed 

linear span of K. For each e > 0, define the subset P~(K, e) of K as follows: 
~o 

x~Pt (K,  e) iff there are sequences (xn) C K, (x*) c B(X*) so that x n ~ x ,  
O.I 

x * ~  0 and hm sup x*(x~) > e. As Xis WCG, B(X*) with its to *-topology is an 
EC, hence by the Eberlein-Smulian Theorem both K and B(X*) are sequen- 
tially compact. This allows the diagonalization as in [S] and proves that 
PI(K, e) is a closed subset of  K. By a theorem ofNamioka [N], the identity map 

from K with its weak topology to K with the norm topology is continuous in a 

dense (and G6) subset of  K. As the identity is clearly discontinuous at points of  
P~(K, e), the latter is nowhere dense in K. 

Define now inductively P~+t(K, e) = PI(P~(K, e), e), and P~(K, e) = 
f")a<~Pa(K, e) when a is a limit ordinal. The sets P~(K, e) form a strictly 
decreasing family of closed subsets of  K, thus there is an ordinal a, whose 

cardinality is at most w(K), the weight of  K, so that P~(K, e ) =  ~ .  The 

e-Szlenk index of K is defined to be s(K, e) = sup{a : P~(K, e) * ~ }, and the 

Szlenk index of K is defined to be s(K) = sup{s(K, e) : e > 0}. Thus s(K, e) < 
s(K) < w(K) ÷. 

DEFINITION. Let K be an EC. The index i(K) of  K is defined as i(K) = 
inf{s(~(K))}, where the infimum is taken over all homeomorphic embeddings 

of K as a weakly compact subset of  some Banach space. 

We now turn to estimating i(K), and we first note that it is enough to 

consider homeomorphisms ~ of  K into c0(F). Indeed, if K is a weakly compact 
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subset of some Banach space X, we can assume that K generates X, and then, 
by the Amir-Lindenstrauss Theorem there is a one-one T: X~co(F) ,  

IIT II = 1. Then ¢ = T IK is a homeomorphism with respect to the weak 
topologies, and using the fact that IIT II = 1 one easily checks that 
s(T(K), e) < s(K, e) for all t > 0, i.e., s(T(K)) < s(K). 

The remark above reduces the problem of  computing i(K) to computat ion 
involving only subsets of c0(F). And we shall use the following convenient 
description ofP~(K, e), for a weakly compact subset K of c0(F), in terms of the 
coordinates: 

x EPI(K, e) iffthere are sequences (xn) c K and (7,) c F, 

tO 

so that x ,  --. x and lim sup [ x. (7.) [ > e. 

Let now K be a weakly compact subset of c0(F) and define 

j ( K , e ) = m i n { s u p  s ( K l r . , e ) ' F =  U F, andF~ c F ~ c  . . . }  

andj (K)  = sup{j(K, t)  : e > 0}. Clearlyj(K) _-< s(K) - -  and the point in defin- 
ingj(K) is that the stronger inequali tyj(K) _-< i(K) holds, as we shall see later. 
The following Lemma gives the basis for our later inductive proof. Its proof 
uses a standard saturation argument. 

LEMMA 3.1. Let K and H be weakly compact subsets o f  co(F) and c0(A) 
respectively, with [A [ = z. Let f :  K ~ H be an onto continuous map. Then 
there are families o f  increasing subsets {A~: ~ < 3} and {Fe: ~ < r} of  A and F 
respectively, so that: 

(1) IAel --IFel < r f o r a l l ~  < r , A =  U {Ae:~ < r } a n d A ¢ =  Up<cAp for 
limit ordinals ~. (Hence A -- U (A¢+I\A¢).) 

(2) For all x E K and ~ < z, x I r~ • K. 
(3) For all x • K  and ~ < z 

f ( x  [r,)(~) -- {f(x)(~) i f  ,~ • A  e, 

(4) For each ~1 > 0 and ~ • A  there is a number p(~, ~1) > 0 so that i f  x • K  
satisfies [f(x)(~)[ > 1/, then [[ x [r~.,~r, [] >/~, where ~ is the unique 
ordinal so that ~ • h e + 11Ae. 

PaOOF. Assuming ~ and F e are already defined, we define inductively sets 
Ao C A~ C • • • containing h e and Bo c B~ c • • • containing F e, and then take 
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A¢+~ = U A. and F¢+~ = U B.. The construction ofA~, F~ is similar to this 

induction step, and for limit ordinals ~ we just take A t = U {A~ : fl < ~}, 

0 
Define A0 = h~ O {6} and B0 = F~, where 5 ~Ae is arbitrary. Having already 

defined A. and B., put 

A.+,=A.  U {supports o fa l l f (x  lB.)where x In.eK}. 

We now define B. ÷ t. Let {~ .  : a < lB. I } be a base for the topology of K lB.. 

For each a, let K~ = {x E K :  x I,. and let L~ be a subset of  K~, I L~ I --< 

[A.+l [ so that f(L~)[A.+, is dense in f(K.)[a..,. 
We now define 

B. ÷ 1 = B. U {supports of  all l E U L~}. 

As the supports of  elements of K and H are countable, and the weight of  a 

subset of  co(A) is at most I A l, we see that I A. I, lB. I < I AI, and the process 
can be continued until A = U A t, so (1) is satisfied. 

We shall check (2) and (3) simultaneously. Fix ~ and let 5 ~A¢+~ and x EK.  

We need to see that x Ire+, ~ K, and by the induction hypothesis we then need 

to check that f (x  Ir,.,)(5)= f(x)(5) only for 5~Ae+I\A¢. So fix m so that 
5EArn. For each fixed n > m consider the set o fa ' s  for which x lB. E~//~, and 

using the density of f(L~,)la .... find, for each such a, an x,~EL, so that 
I f(x~)(5) - f(x)(5) I < 1/n. The net (x~) (ordered by inclusion of the ~//.'s) has a 

convergent subnet, and let x. be its limit. Then x. lB. = x lB., x. is supported in 

B. + i, and I fix.)(6) - f(x)(6) I < 1/n. As F~ + t = U B. we see that x. ~ x I r~.,, 

so x Ir,.,eK and (2) is satisfied. Also by continuity of f ,  f i x  Ir~+,)(5)= 
l imf(x .)(5)=f(x)(5) .  Finally, if 5~A¢+~, a similar argument shows that 

f (x  It,÷,)(5) = 0. 
Part (4) follows immediately from (3) and the continuity of f :  If it were false, 

find x. so that [f(x.)(5)l > q, yet I[ x. Ir~+,\r~ [[ < 1/n, and let xbe  a limit point 

of(x.) .  Then x [r. ,  = x Ire and 5 ~A~, hence by (3) 

r /<  If(x)(5)l = If(x Ir.,)(6)l = If(x = o, 

a contradiction. 

LEMMA 3.2. Let K and H be weakly compact subsets of  co(F) and co(A) 
respectively, and let f :  K--, H be an onto continuous map. Then j(H) < s(K). 

We shall prove the Lemma by establishing the following claim using 
transfinite induction on I A I : 
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CLAIM. For every rl > 0 there is an increasing chain At C A 2 C • • • with 
A = U A., so that: 

I f  for some fixed n, [f(xj)(Sj)l > r/for two infinite sequences (xj) c K and 
(Sj) c A,,  then there is a subsequence (xj~) and an infinite sequence (~'k) c F so 
that IXj~(~k)I >= 1/n. 

The Lemma follows immediately from the Claim. Indeed we es t imate j (H)  
by using the chain (A,) given by the Claim. For each fixed ~/and n, we can use 
the Claim to prove by transfinite induction that for each a 

f - t (P, (  H la., 7)) C P~(K, 1/n). 

Thus s(H IA,, r/) < s(K, 1/n) < s(K). As n is arbitrary, j (H,  r/) < s(K), and as r/ 
is arbitrary, j (H)  <-_ s(K). 

PROOF OF CLAIM. We use I_emma 3.1 to find sets A¢ and F¢ and for each 
5,/z(5, r/) > 0 as in the Lemma. 

If [AI = tat, the sets A,+t\A¢ are all countable, so we can enumerate them 
A¢+t\A¢ = {5(~, n ) :  n ~N}.  Define now 

A, = {5 :5  = 5(~, k) for some ~and  some k < n, and a(5,  r/) > 1/n}. 

Clearly A =  LI A, and A1 c A2 c . . . .  If  If(xj)(~AI > ~/ where (52)c A, for 
some fixed n, then by passing to a subsequence we can ensure that there is a 
fixed k < n so that dj = 5(~-, k), and in particular the 4 ' s  are pairwise different. 
By the definition of/t(& r/) there are ~,j ~ F¢+1\ F¢, (so, in particular, the 7j's are 

> 5 > 1  different!) with Ixj(~'j)l = [[ xj [rs+,xr~j 1[ = # (  j, r/) = /n. 
For the inductive step, let zt¢ : c0(A) --- c0(A¢ + 1/A¢) be the restriction map, and 

consider f¢ = 1t¢ o f :  K-~ c0(A¢ +1/A,). Applying the inductive hypothesis to f¢, 
we can find for each ~an increasing chain A¢,1 C A~,  2 C • • • SO that A¢+I/A¢ -- 
U A¢,, as in the Claim, and define A, to be those 5 E U { A ~ ,  k : ~ < l" ,  k _-< n } 

for which p(5, ~/) >_- 1/n. 

Again (A,) increases and A = 1,3 A.. Given sequences (xj) c K a n d  (~) C A, 
for which If(xj)(~A I > rl, we distinguish two cases: 

Case I. There is a ~ so that infinitely many of  the ~ 's  belong to the same 
A¢+ 1\ A¢ (so, in fact, to A¢.,). By the inductive hypothesis there is a further 
subsequence (xj~) and 7k'S SO that IxjA~'k)l >-- 1/n. 

Case II. If  each A¢ + 1/Ae contains only finitely many of  the ~'s,  we can pass 
to a subsequence so that 5j ~ A¢,, and the ~j's are pairwise different. Again by 

the definition of p(Sj, r/) there are 7j~Ue,+t/F¢ (hence different!) so that 

Ixj(~j)t >=a(~, 7)>= 1/n. 
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LEMMA 3.3. I f  K is a strong weakly compact subset of co(F), then i(K) < 
j(K). 

PROOf. For strong weakly compact sets s(K)= s(K, 1), so also j (K)= 
j(K, 1). Thus fix an increasing chain (In) on which j(K) =j(K, 1) is attained, 

and define ~0 : K--*c0(F) by ¢p(x)(?)= x(?)/n when ? ~ F , \ F , _ I ,  and we esti- 

mate s(~o(K)). Fix N, then one easily proves by transfinite induction that for 

each a 

~o-'(P,(~o(K), l/N))IrM c P,(K IrN, 1). 

Thus s(co(K), 1/N) <= s(K [rN, 1) <j(K). As N is arbitrary s(~o(K)) <=j(K), and 

thus certainly i(K) < j(K). 

THrOR~M 3.4. For every weakly compact subset H of  co(A),j(H) < i(H). I/ 
H is a strong weakly compact set then, in fact, j(H) = i(H). I f  the strong weakly 
compact set H is a continuous image of  an EC, K, then i(H) < i(K). 

PROOF. Given H C c0(A), fix a homeomorphic embedding K c c0(F) of H 
so that i(H) = s(K). As H is a continuous image of K, Lemma 3.2 gives that 

j(H) < s(K) -- i(H). 
I f H  is a strong weakly compact set then by the first part j (H)  =< i(H) ~ and 

by Lemma 3.3 i(H) <j(H) so they are equal. 
Finally, if H is a continuous image of K, then by choosing appropriate 

homeomorphic copy of K we can assume that i(K)= s(K). By Lemma 3.2 

j(H) < s(K)= i(K), and by the previous part of  the Theorem i (H)=j(H)  
when H is a strong weakly compact set. 

4. Spaces with large index 

Throughout this section we fix a cardinal z satisfying z ° ' =  z, and we 

construct a family {K¢ : ~ < z + } of  strong weakly compact sets of  weight z, 

whose indices i(K¢) are unbounded in z +. 

The sets K~ will be constructed by transfinite induction. For successor 

ordinals, and for ordinals with uncountable cofinality, the construction is very 

simple, and the spaces K~ will only satisfy s(K~) > ~ for these ordinals. The 

crucial construction is when cof(~) = m. It is in this case that the condition 
3 °, = z is used, and it is for these ordinals that we prove the desired stronger 

result that i(K~) > ~. 
We start with K~ = {A C F : [A I < 1 }, where [ F I -- 3. Then K~ is homeo- 
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morphic to the one-point compactifieation of the discrete set F, and P~(K~, 1) is 
the single point Z ,  hence s(Kt) = 1. We now distinguish three eases. 

Case I .  ~ = ~ / +  1 
Assume K, is an adequate strong weakly compact subset of c0(F), where 

IFI = z, and that s(K,) > ~1. Define 

K ¢ = { A  U B : A E K q a n d B  c F ,  IBI _-<1}. 

The set K¢ is an adequate strong weakly compact set, and for every ordinal 
a < s(K,) 

P.(K¢, 1)C {A U B : A ~ P . ( K , ,  1) and B c F ,  IBI ---< 1} 

hence s(K¢) > s(K 0 + 1 > ~1 + 1 = ~. 

Case H. cof(~) > o9 
Assume that for each r /<  ~, K, C Co(F~) are adequate strong weakly compact 

sets satisfying s(K~) =>- t/. Let F be the disjoint union of the F~'s and define 
K¢ = U { K, : rl < ~ } c co(F). Topologically, K¢ is obtained from the one point 
compactifieation of the disjoint union of the K~'s by identifying all the 
different points J~ C F~ to the unique point Z~ C F. 

One checks easily that K¢ is an adequate strong weakly compact set, and that 
s(K¢) > sup{s(K,) : t / <  ~} > ~. 

Case 111. cof(~) = o9 
Assume ~n t ~ and that for each n, Kn is an adequate strong weakly compact 

subset of c0(Fn) satisfying s(Kn) > ~ where [F~I -- r. Let F = II~_~ F~ and let 
n. : F--- F. be the projection on the n-th coordinate. As r °' -- r, [FI = ~', and 
K¢ is defined as a family of finite subsets of F as follows: 

A finite subset A C F belongs to K¢ iffthere is an n E N so that 
(1) rr~(a)~Kn. 

(2) I f  x ÷ y are in A then x(i) = y(i) for all i < n and x(n)  ÷ y(n). 
We say that A is witnessed by n. 

It is clear that K¢ is adequate. To see that it is weakly compact assume 
A~ C A2..-  is an increasing chain in K¢ with IA~I > 2. Fix n that witnesses A~. 
I fx  ÷ y are in A~, then n is the first coordinate where they differ, and since they 
belong to all the Aj's, the same nmust witness all the A/s. By (1) this means that 
n . (A j )6K ,  for all j ,  and by (2) n. is one-one on each Aj, i.e., n.(Aj) is an 
increasing chain in Kn - -  hence must be finite. 
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To estimate j(K~) = i(K 0, let (A.) be an increasing chain with F = U A.. 

Considering each F. with its discrete topology, and F with the product 

topology, F admits a complete metric, hence Baire's Category Theorem applies 

and there is a t so that the closure of A, has non-empty interior. So find a basic 

open set V = (71 . . . . .  7k) × II~+ 1 F. with V n At dense in V. We shall show 

that for each m > k, K, I~ contains a subset which is combinatorically 

equivalent to K,.. Thus s(K~ IA,)>-_s(K,.)>= ~,., and since m was arbitrary 

s(K¢ IA,) => ~- As this holds for all chains (A.) with F = U A., this proves that 

j(K~) > ~. 
Thus fix m > k and fix points 7jEFj for k < j  < m arbitrarily. For each 

7EF, ,  consider the open set Vr = (Tt . . . . .  7,,-1, 7) × 1-I~+1 F, C V. As At is 
dense in V, we can find for each 7 ~ l-'m a point ar ~ Vr n At. But now note that 

for each A ~K,, ,  A = {at: 7 EA } belongs to K¢: It is witnessed by m. Thus 

/~,, = {A:A EKm } C K¢ [,x, is combinatorically equivalent to K,, as required. 

5. Sets with large index for r = 091 

In this section we construct a family {K¢ : ~ < 09")2} of adequate strong weakly 

compact subsets of  c0(090 satisfying i(K¢) > ~ for all ~ < 092. It would be of 
interest to know if a similar construction is possible, without using any set 
theoretic assumptions, for all cardinals of  uncountable cofinality. 

The construction depends on the existence of uncountable almost disjoint 

families of infinite subsets of  N (i.e., I N~ O N21 < ~ for different sets in such a 
family). In the construction of Ke when cof(~) = 09 any such family will do - -  

but when cof(~) = 09~ we shall need one with an additional property, and we 

first construct such a family. 

LEMMA 5.1.  There is an almost disjoint family {N. : a < 091} of infinite 
subsets of N so that for each a < p < 091 we have 

(5.1) I { q < a :  IN n ANal = IN n n U a l } l  < ~ .  

PROOF. We formulated (5. l) as we are going to use it. In fact we construct 

by transfinite induction sets iV. satisfying the stronger condition that 

(5.2) I { r / < f l : l N  n NN,  I = IN n n Nal}l <oo.  

Assume {N,:a <fi}  have already been chosen, and renumber them as 
(N, : n < o9 }. We choose the set Np by choosing successively Np N Arm, m = 

1, 2 . . . .  and ensuring that 

(5.3) IN, NN, , , I÷IN , ,NNal  forall n < m. 
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To do this assume N~ (3 N p , . . . ,  Arm-~ A Np are already chosen. As Arm is 

almost disjoint from N~ . . . .  , Nm-I the set Nm\( t,-J~=-i I Nj) is infinite, and we 

can thus choose for Nm ~ Np a number of points from this set so as to ensure 
that [Na ~Nm [ is different from the m - 1 numbers { IN,, N N, I : n < m }. 

This proves (5.3), and (5.2) holds for these sets. Indeed given a < f l  < o91, 

consider the construction of Np. At this step No was denoted by N, for some n 

and by the construction of  Np there are at most n - 1 of the {N, : q <f l} ,  

namely N~ . . . .  , N,_ ~ for which I N~ tq Np I = I N~ f~ N~ I could be possible. 
We now pass to the inductive construction of {K¢ : ~ < 092}. Starting with 

gl = {A c 09~: IAI < 1} as in the previous section, the sets Ke will satisfy a 

property stronger than j(K¢) >= ~, namely 

(5.4) s(K¢ Ir) > ~ for every uncountable subset F C 09.. 

Case I. ~ - - q + l  

We use the same construction as in the previous section. It is clear that ifK, 

satisfies (5.4) so does K¢. 

Case II. cof(~) = o9 

Fix ~. t ~, and for each n an adequate strong weakly compact subset K, of  

c0(090 satisfying (5.4) for ~,. Let {N~ : a < 09~} be an almost disjoint family of 

infinite subsets of N, and define K¢ as follows: 

A finite subset A c09~ belongs to K¢ iff A EK, for some n < 
min{ IN~ n Nal : a,/~ EA, a ~/~}. We say that A is witnessed by n. 

The set K¢ is adequate, and it is weakly compact ~ for if (Aj) were an infinite 
increasing chain in Ke, choose a ~/? in A~. Then o~, fl EAj for allj, and thus each 
of the Aj's is witnessed by some n(j) < IN~ A NBI. By passing to an infinite 

subchain, we can assume they are all witnessed by the same n - -  contradicting 

the fact that K, does not contain an infinite increasing chain. 

It remains to check (5.4). Fix F c 09~, IFI = o9~. For each fixed n, one can 

find F, c F, I F, I = o91 so that I N~ A Np I > n for all a, fl ~ F,. Indeed, there 
are only countably many n-subsets of  N - -  so F, can be chosen so that all the 

{N~ : a ~ F , }  contain the same n-subset of  N. But now every A EK,  Ir. is 

witnessed by n, i.e., K, ]ro C K It., and since K, satisfies (5.4) for ~,, we obtain 

s(K¢ Ir) >-- s(K~ It.) >-- s(K, Ir.) >--- ~,. As n was arbitrary, s(K~ [r) >= sup~, = ~. 

Case Ill. cof(~) = o91 

Let {~, : a < 09~} increase to ~, and for each a < 09~, assume K~ is an adequate 

strong weakly compact subset of co(091) satisfying (5.4) with respect to ~.  Let 
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{Na : a <¢ol} be the almost disjoint family constructed in Lemma 5.1. Define 
K¢ as follows: 

A finite subset A C o9~ belongs to K¢ iffthere is an ~/< min(A ) so that: 

(I) A ~K,  r 
(2) IN~ n N~I = IN, N Npl for all a, f l~A .  

We say that A is witnessed by rl. 

The set K¢ is adequate, and it is weakly compact - -  if(Aj) were an increasing 
infinite chain in K¢, choose any a < f l  in Am, so a, flEAj for a l l j .  By (5.1) 
{ r / <  a : I N~ N N~ I = I Np N N~ I } is finite, and each Aj is witnessed by an 
element of  this set. Hence by passing to an infinite subchain we can assume all 
the Aj's are witnessed by the same r / - -  contradicting the weak compactness of  
K.. 

Let now F c oJi be uncountable, and fix r / <  w~. Then there is an n so that 
F~ -- { a ~ F , ,  > r/and IN, fl N~ I = n } is uncountable - -  and every A EK~ Jr, 
is witnessed by r/, i.e., K, [r, C K¢ [r,. Thus s(K¢ Iv) > s(K, [r,) > ¢,, and as r/ 
was arbitrary s(K¢ Ir) > ~- 

REMARK. All the Eberlein Compacts constructed in this and the previous 
section are non-uniform (see [BS]). In fact one can easily check that i(K) < o9 
for every uniform Eberlein Compact K. 

The construction in section 4 is in fact modeled on the construction of a non- 
uniform EC in [BS]. The one in this section is different, and yields a non- 
uniform EC of  weight o9~ without using CH. Another, example was constructed 
by different methods by Leiderman and Sokolov in [LS], example 5.3. 

6. Universal spaces 

Throughout  this section z will be a fixed cardinal of  countable cofinality, and 
% a sequence of cardinals increasing to z. We shall also assume that z is a 
strong limit, i.e., 2 ~ < z for all cardinals ot < 3. 

The proofs of  both Theorems, C and D, are basically done by using the 
properties of z to enumerate all spaces of weight (resp., density character) less 
than z - -  and then putting all these spaces together in the proper way to obtain 
the universal space. 

The following very simple Lemma uses the same satur, .ion argument used 
in Lemma 3.1. 

LEMMA 6.1. Let K C c0(F), IF I  = T, be weakly compact. Then there are 
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subsets F~ c F 2 c  - . -  ofF, (3 F, = F  with IF, I = r. so that x ]r ~ K  for all 
x ~ K and all n. 

PROOF. It is enough to show that given any A~ c F, there is a A c F 
containing A~ so that I A I = I A~ I and K la c K. Define a sequence A, inducti- 

vely: Having defined An, let Kn c K be such that I gnl ___< I An I and Kn la. is 
dense in K It~. Then take An+l = An t3 {supports of all x E K , } .  One easily 
checks that A = 1.3 An works. 

PROOF OF TI-I~OREM C. We first define a sequence K, of  EC's of  weight 
smaller than T as follows. List all homeomorphic  types of  EC's of  weight at 
m o s t  31 as {K(~t) : ~l < r/l }, and let K~ be the one-point compactification of  the 
disjoint union of  the K¢,'s. Denote by Pt the point of  infinity in K~. Note that 
r/, < 2 c2'~ < 3. Indeed, rh is bounded by the cardinality of all subsets of  c0(30. 
Thus also w(KO < 3. 

To define K2, fix first any ~ < r/l, and consider all EC's of  weight at most  32, 
say L,  so that L contains a dosed  subset, homeomorphic  to K(~)  as a retract of  
L.  For each such L consider all homeomorphic  embeddings f :  K ( ~ ) ~  L so 
that f(K(~O) is a retract of  L,  and for each such f consider all retractions 
r: L --'f(K(~l)). Enumerate all these triples (L , f ,  r) as {K(~l, ~2): ~2 < r/2}. 
(Thus the notation suppresses the dependence on the homeomorphism and on 
the retraction. But, in fact, each space L is repeated in the list as many times as 
there are homeomorphisms f :  K(~2)~L and retractions r : L - - f ( K ( ~ ) ) .  A 
specific homeomorphism and a specific retraction are associated with each 

Let K2 be the one point compactification of the disjoint union of all the 
{U(~l, ~2) : ~l < ~l, ~2 < ~2) and let P2 be the point of infinity in K2. Again 
w(K2) < 3. Indeed, fixing K(~) there are at most  2 (2"~ possible L's. For each L 
there are at most  IL I 'x(¢, )' < (2*2)(2'0 homeomorphisms f ,  and for e a c h f  at 
most  I K(++)I ILI < (2~,)~2.~ retractions. 

We continue in the same way: Having defined Kn - t fix K(+t . . . . .  +n- t) and 
list all EC's L, w(L) < 3n containing a copy o f K ( + t , . . . ,  +n-z) as a retract, all 
homeomorphic  embeddings f :  K(+~, . . . ,  +._ ~) - -  L as a retract of  L,  and all 

retractions r: L ~f(K(+l . . . .  , ++-l)) as {K(+I . . . . .  +n-l, +n) : +, < t/+). Take 
K. to be the one point compactification of  the disjoint union of  

{K(+ t , . . . ,  +n) : +~ < r/t . . . .  , +n < r/, }, with p+ as the point of infinity. As before 
w(g.) < 3. 

DEFINITION. A point (xt, x2,. • • ) ~ I I  K~ is consistent if one of  the follow- 
ing two possibilities holds. 
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( l )  There are ~ . < r / .  so that for all n , x . ~ K ( ~ l , . . . , ~ . )  and 

f . (x . )  = r . (x.+l)  where f . : K ( ~  . . . .  , ~ . ) - - -K(~,  . . . .  ~.+~) and 

r . :  K(~I . . . . .  ~. + ~)~f . (K(¢ l ,  • • . ,  ~.)) are the homeomorph i sm and re- 

traction associated with K ( ~  . . . . .  ~. + ~). 

(2) There is an N so that the condit ions in (1) hold only for n < N ,  and so 

that x.  = p.  for all n >_- N. 

We can now define the universal space ~//: 

~/ ~---((Xl, X2, . . .  ) ~  R K, ' (x , , x2 , . . . ) i scons i s t en t } .  

It is easy to check that J / / is  a closed subset o f  IIK,. The latter, being the 

product  o f  a countable number  of  EC's, is itself an EC, and its weight is 

sup w(K,) = z. Thus J//is also an EC of  weight z. 

CLAIM. Given any Eberlein Compact K, w(K) <-_ z, there are ~, < 0. so that 
K is homeomorphic to 

~//(~t, ~2,- • • ) = ((x~, x2 . . . .  )C°l / :  x,  EK(~I . . . .  , ~,) for all n}. 

Indeed, consider K as a subset o f  c0(F), [ F I = z, and use Lemma 6.1 to find 

subsets F1 C F2 C . . .  with F =  U F, ,  IF, [ = z, and K ]r. C K. Now 

w(K Ir) --< r,, so K It1 appears in the list as some K(~0. Next,  w(K It)  =<- r2, so 
the triple consisting of  K It,, the identity embedding of  K It, into K It2 and the 

retraction of  K It, onto K It, given by the restriction to FI, appears in the list as 

some K(~ ,  ~2). The indices ~3, ~4 . . . .  are defined similarly. Identifying each 

K Jr. with the appropriate  K ( ~  . . . . .  ~.), and using the fact that F = U F. ,  we 

see that the map x - - ( x  Ir,, x Ir, . . . .  ) is a homeomorph i sm of  K onto 
o//(~, ~2 . . . .  ), proving the Claim. 

It remains to see that each 0//(~, ~2 . . . .  ) is a retract of°//. So fix ~l, ~2,. • • and 

le t f .  : K ( ~ , . . . ,  ~.) - -  K ( ~ , . . . ,  ~. + ~) be the homeomorph i sm associated with 

K ( ~  . . . . .  ~.+1). For x = (x~, x2 . . . .  ) ~ / / ,  define N(.~) to be the largest n so 

that x.  ~ K(~I . . . .  , ~.). So, in particular N(x) = 0 is x~ ~ K(~ )  and N(2)  = ~ if  

X ~ o//(~t, ~2 . . . .  ). Finally fix an arbitrary point  ~ ~ °//(~l, ~2 . . . .  ) and define the 

retraction r : 0 / /~  ~/(~l, ~2 . . . .  ) as follows: 

r(2)  = ix, . . . .  , xN, fN+ . . . .  ) 

if N(x )  -- O, 

if N(R) = N, O < N < oo, 

i f N ( ~ )  -- ~ .  
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Checking the continuity of  r is routine once the following observat ion is 

made: If  x ( / ) - - -x ,  and 0 =< N(X) < ~ ,  then N(•(j)) = N(X) for large enoughj .  

Indeed, this follows from the fact that each of  the sets K(~I . . . .  , ~m) is clopen 

in Km, for m = l, 2 , . . . ,  N(X) + 1. For the same reason, if  N(X) = oo then 

necessarily N(.~(j))--" oo. 

PROOF OF THEOREM D. The proof  is very similar to that o f  Theorem C, 

and we only sketch it. We define spaces X~ analogous to the K~'s in Theorem C: 

Given X ( ~  . . . . .  ~ -  l) we consider all W C G  spaces Y, of  density character at 

most  %, containing a norm one complemented,  isometric copy of  

X(~I, • • •, ~ - 0 ,  all isometric embeddings  T:  X(~I . . . . .  ~ - 1 ) ~  Y as a norm 

one complemented subspace of  Y, and all norm one projections P :  Y ~  

T(X(~I  . . . . .  ~n_,)). We list them as {X(~I . . . .  , ~ , - i ,  ~ ) :  ~ < q,] .  Let A -- 

[--J{(~l . . . . .  ~n): ~i < qi, n = 1, 2 . . . .  }. 

A func t ion  f o n  A ,  sa t i s fy ingf (~l  . . . . .  ~. ) ~ X(~I . . . .  , ~.) is called consistent  

if: 
(1) For each (~1 . . . .  , ~ . + , ) e A ,  i f  T . : X ( ~ l  . . . .  , ~ . ) - - 'X(~1 . . . . .  ~.+l) a n d  

P . :  X(~1 . . . . .  ~. + 1)--" X ( ~ , .  . . , ~.) are the e m b e d d i n g  a n d  projection 

associated with X(~l  . . . .  , ~. + l) then 

Tj( I, . . . , = . . . , + 1).  

(2) There is an N so that  for  all  n > N 

The universal space B is the complet ion of  the space of  all consistent 

functions, under  the norm II f l l  - -  s u p {  II . . . .  , ~n)I[ : ( ~ J , . . . ,  ~ ) E A  }. It 
follows from the fact that z is a strong limit, that B has density character z. 

Fix a sequence (ft,) with ft, < r/, for all n. Given (~1, • • •, ~ , ) E A ,  let N = 

N(~I, • • •, ~ )  be the first N s o  that ~N ~ flu. A func t ionfbe longs  to the subspace 

B(fll, fiE,.- -) OrB if 

f ( ~ l , . . . ,  ~n+l) = T , f (~ l  . . . .  , ~ )  for all n > N -  1 (when N > 1), 

or  

f(~, . . . . .  ~.) = 0 (when N = 1). 

I f  X is a W C G  space, with density character z, it is isometric to some 

B(fll, r2 . . . .  ). The p roof  is similar to the argument  in the p roof  of  Theorem C, 
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when Lemma 6.1 is replaced by the following theorem of Amir and Linden- 

strauss [AL]: 

I f  X is a WCG space with density character ~, there is a sequence o f  

commuting norm one projections (P.) on X,  so that P,,X has density character 

z., and so that P.x -- ,x for all x E X.  

Finally a norm one projection Q : B ~ B(fl~, f12,...) is defined by 

(Qf)(~, . . . . .  ~,) = T , T . _ ~ . . .  T~_,f(fl ,  . . . . .  flu-~) (if N >  1) 

and 

Q f ( ~ , , . . . ,  ~.) = 0 ( i fN  = 1). 
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